

Infrared and Vibration based Bearing Fault Detection Using Neural Networks

Olivier Janssens, Lothar Verledens, Raiko Schulz ,Veerle Ongenae Kurt Stockman, Mia Loccufier, Rik Van de Walle, Sofie Van Hoecke

AITA - 2015 - PISA

Overview

- Bearings and bearing fault causes
- Experiments and data set creation
- Fault-detection architecture
- Results
- Conclusion

Bearings: what they do

Bearings & faults

Experiment & data set

Architectu

Bearings: example where they are used

Bearings & faults

Experiment & data set

Architecture

Bearings & faults

Experiment & data set

Results &

[1] C. Radu, The most common causes of Bearing Failure and Importance of Bearing Lubrication, RKB Technical review, 2010

III iMinds

Bearings & faults

Experiment & data set

Architecture

Goal

Detect and identify which fault(s)/ condition(s) is/are present using thermal imaging and vibration data

Bearings & faults

Experiment & data set

Architectur

Setup & faults/conditions

1. Servo-motor5. Disk9. Metal plate2. Coupling6. Shaft10. Field of view3. Bearing housing7. Accelerometer11. Thermal camera4. Bearing8. Thermocouple

Bearings & faults

Experiment & data set

Architecture

Results & conclusion

ELIS – Multimedia Lab

Setup & faults/conditions

Mildly reduced lubrication (MRL)

Heavily reduced lubrication (HRL)

No fault (NF)

🔊 iMinds

Outer raceway fault (ORF)

Experiment & data set

Architecture

Data:

40 recordings (5 bearings * 8 faults/conditions) 1 hour video per recording 10 minute vibrations per recording

Corrected for ambient temperature.

	Bearing 1	Bearing 2	Bearing 3	Bearing 4	Bearing 5
ORF-IM	36	37	38	39	40
ORF	31	32	33	34	35
HRL-IM	26	27	28	29	30
HRL	21	22	23	24	25
MRL-IM	16	17	18	19	20
MRL	11	12	13	14	15
NF-IM	6	7	8	9	10
NF	1	2	3	4	5

iMinds

Experiment & data set

Multi-sensor solution:

Thermal images - preprocessing:

Region of interest detection using Gaussian mixture models [2]

[2] Z. Zivkovic. Improved adaptive gaussian mixture model for background subtraction. ICPR 2004. pages 28–31 Vol.2, Aug 2004.

Experiment & data set

Architecture

Bearings &

ELIS – Multimedia Lab

Multi-sensor solution:

Thermal images - preprocessing: Use ROI as timeseries

Multi-sensor solution:

Thermal images - preprocessing: Use ROI as timeseries

Bearings & faults

Experiment & data set

Architect

Multi-sensor solution:

Thermal images – dataformat:

Use ROI as timeseries

Fault detection architecture

- --- Neural network
- --- Random forest classifier
- Support vector machine

MRL: Mildly reduced lubricationORF: Outer raceway faultHB: Healthy bearingHRL: Heavily reduced smearing

Experiment & data set

Architecture

Multi-sensor solution – Neural network 1:

Architecture: $675 \rightarrow 325 \rightarrow 40 \rightarrow 2$

Experiment & data set

Architecture

Multi-sensor solution – Neural network 2:

Architecture: $255 \rightarrow 100 \rightarrow 2$

earings & faults

Experiment data set

Architecture

Neural network techniques used:

- Training: Stochastic gradient descent + momentum with Backpropagation
- Activation function hidden nodes: Rectified linear units
- Activation output nodes: Softmax
- Loss function: Cross entropy

Vibration part:

🔊 iMinds 📃

Experiment & data set

Architecture

Results

Fault	IR-based precision	Multi-sensor precision
HB	50 %	100 %
HB - IM	70 %	100 %
MRL	100 %	100 %
MRL - IM	80 %	80 %
HRL	70 %	100 %
HRL - IM	70 %	90 %
ORF	30 %	100 %
ORF - IM	40 %	100 %
Average	63,75 %	96,25 %

Experiment & data set

Architecture

Acknowledgment

This work was partly funded by the O&M Excellence project, a VIS project of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT), and has been performed in the framework of the Offshore Wind Infrastructure Application Lab (http://www.owi-lab.be).

Thank you for listening !

Questions ?

