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1 Introduction

1.1 Context within BEL-Float

This report summarises the development of surrogate models to assess the fatigue dam-
age of welded joints of a floating offshore wind turbine (FOWT) substructure based on
different environmental and operational conditions (EOCs). It represents the second de-
liverable (D1.1.5.3) for Topic 5 of the BEL-Float project. Where Deliverable 1 (D1.1.5.1)
[1] presented a modelling strategy for the determination of local fatigue damage based on
time domain metocean input, the work presented in this deliverable focuses on reducing
the computational burden of detailed fatigue analyses by means of surrogate models.

1.2 Problem statement

A long-term fatigue analysis of the welded joints of a FOWT substructure requires captur-
ing local hot spot stresses under a large number of EOCs. This can be done by extending
the time domain structural load mapping and finite element (FE) stress analysis from De-
liverable 1 with hot spot stress extrapolation and fatigue damage calculations. However,
the cumulative computational demand of this process can be excessive when used for the
thousands of load cases that must be considered for long-term fatigue analysis. Note that
especially the dynamic simulations and FE analyses are the bottlenecks of this process.

Neural networks (NNs) can be used to map metocean inputs, such as wind speed and
wave height, to local stress responses. This enables fatigue damage estimation caused
by new, unexplored sea states without having to run the previously mentioned com-
putationally expensive time domain simulations. I.e., the NN acts as a surrogate for
both the dynamic simulation and the FE solver, as illustrated in Figure 1. The main
objective of this deliverable is therefore to assess the feasibility and performance of neu-
ral network-based surrogate models in predicting the fatigue stresses at welded joints of
FOWT substructures under varying EOCs.

2 Basics of neural networks

NNs are computational models organised in layers, each consisting of multiple neurons.
A typical NN includes an input layer, one or more hidden layers and an output layer.
the input layer receives raw data and encodes it into a format the network can process.
The hidden layers transform the input data through weighted connections and activation
functions, which allows the network to learn complex patterns and create more useful
representations of the data, and an output layer, which produces the final result for the
target variable. Neurons in adjacent layers are connected via weighted links, with each
weight representing the importance of the corresponding input, and each neuron has a bias
term and activation function to introduce the non-linear characteristics of the network [2].
In a feedforward neural network (FNN), information flows from the input layer through
the hidden layers to the output layer. An example of an FNN with three inputs, two
hidden layers and one output is illustrated in Figure 2.

The training of a NN consists of forward and backward passes. In the forward pass,
the data moves through the network to generate predictions. The error between the
predicted and actual values is calculated using a loss function. Examples are the mean
squared error (MSE) or the mean absolute error (MAE). Through the backpropagation
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Figure 1: Schematic representation of (a) the load mapping method from Deliverable 1
and (b) the newly developed surrogate model method.

algorithm it is then computed how each weight can be adjusted to reduce the error by
calculating the gradient of the loss function. An optimisation algorithm is then used to
update the weights and minimize the loss.

Beyond classic FNNs, several alternative groups of architectures exist. One such group
are the recurrent neural networks (RNNs), which have been specifically designed to process
sequential data, such as temporal data. As illustrated in Figure 3, RNNs use a hidden state
h(t) to retain information from previous timesteps, enabling the network to learn temporal
patterns [3]. Long short-term memory (LSTM) and gated recurrent unit (GRU) networks
are advanced variants of RNNs. LSTMs use three gates to learn temporal patterns, while
GRUs use only two. For more information about the workings of (R)NNs, the reader is
directed to more specialised literature.

3 Surrogate model method

3.1 Data generation

The Utsira Nord region of the coast of Norway is used for generating metocean data, as its
deep waters (185− 280m) are ideal for FOWTs and particularly for the OC4 substructure,
which is typically evaluated at a depth of 200m [4]. Based on the study of Cheynet et
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Figure 2: Example of a basic FNN with three inputs, two hidden layers and one output.

Figure 3: Example of a recurrent neuron through time. Adapted from [3].
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al. [5] and the characteristics of the reference turbine, representative metocean conditions
were selected, using the mean wind speed at hub height Vw, the significant wave height
Hs, and the peak wave period Tp. The full combination of the selected values shown in
Table 1 are considered, resulting in a total of 18 environmental states. Note that wind and
waves are considered to be aligned and that the sea current is neglected. For this work,
each sea state was simulated for five minutes with a temporal resolution of 0.1 seconds.

Variable Values
Wind speed 3m/s (cut-in), 11.4m/s (rated), 25m/s (cut-out)

Significant wave height 0.5m, 2m, 3.5m
Peak wave period 7 s, 12 s

Table 1: Metocean variables considered for the fatigue analysis of the OC4 DeepCwind.

Using these environmental conditions, dynamic simulations were run for a stiffened ver-
sion of the OC4 DeepCwind semisubmersible platform in a custom version of OpenFAST
v3.5.3. The resulting time domain load series were then mapped onto a three-dimensional
FE model of the substructure and solved in the linear elastic solver of Abaqus 2024. More
information on the stiffened version and the load mapping can be found in Rappe et al.
[6]. For this work, one critical welded region was selected for the extraction of hot spot
stresses (HSS) for fatigue analysis, as shown in Figure 4. The FE model had a global
element size of 750mm, which was refined to a minimum size equal to half the thickness
of the member at the weld toe for the fatigue analysis.

Figure 4: Illustration of the stiffened OC4 DeepCwind substructure, showing the aligned
wind and wave direction with the black arrow and the considered welded region.

To calculate the fatigue life, the HSS method as defined in DNV-RP-C203 [7] was
considered. For each point of interest, the stresses perpendicular to the weld toe were
extracted at a distance of 0.5 t and 1.5 t from the weld toe, with t the thickness of the
member, as illustrated in Figure 5. The HSS σhs was then calculated by linearly extrap-
olating the extracted stresses towards the weld toe. Note, that as the weld geometry
cannot be explicitly modelled due to the use of shell elements, the intersection line of the
members was used as a reference. For the considered welds, eight HSSs were extracted at
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the weld toe on cross brace 2 (CB2), Y lower 2 (YL2), and the main column (MC), for a
total of 24 HSS locations, as shown in Figure 6.

Figure 5: Hot spot stress extrapolation method as defined in DNV-RP-C203.

Finally, a database was created to train the NNs. This database contains the EOC
parameters (Vw, Hs, and Tp), the time and wave elevation signals, and σhs at the 24
considered HSS locations.

3.2 Neural network architectures

All considered architectures use the EOC paramaters and time domain wave elevation sig-
nal as inputs. The output of the networks are the time domain HSSs of the 24 considered
locations around the welds.

Using these inputs and outputs, three NN architectures were implemented. A FNN
was used as baseline due to its simplicity and widespread use in regression tasks, and
LSTM and GRU networks were used for their ability to model time dependencies. For
the FNN, the dataset was randomly partitioned into a training, validations, and test set,
containing respectively 80%, 10%, and 10% of the original dataset. For the LSTM and
GRU, the sequential nature of the data must be respected. In these models, the first
80% of the data of each environmental state was selected as training the data, with the
remainder split equally over validation and test sets.

For each type of architecture, hyperparameter optimisation was performed. This in-
volves selecting the number of hidden layers, neurons per layer, activation functions and
optimisation algorithms. Model performance was finally evaluated evaluated using MSE,
MAE, and by comparing the predicted versus actual HSS time series. The hyperparame-
ters shown in Table 2 are considered for training and evaluating the three models.

4 Results

4.1 Feedforward neural network

The FFN with the best performance consisted of one hidden layer with 128 neurons
using the ReLU activation function. This model achieved the lowest MSE test loss of
0.7364MPa2. However, the difference in performance across the tested models was small,
often only differing at the third decimal digit.
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Figure 6: Locations were the hot spot stresses are evaluated for the considered welded
region.

Hyperparameter FNN LSTM and GRU
Number of hidden layers 1, 2, 3 1, 2, 3

Number of neurons per layer 16, 32, 64, 128, 256 16, 32, 64, 128
Activation functions ReLU, tanh, swish tanh

Learning rate 0.001 0.001
Batch size 32, 64 32

Loss function MSE MSE, MAE

Table 2: Hyperparameter optimisation settings for the different architectures.

ETF BEL-Float
The sole responsibility for the content of this document lies with the author(s). It does not nec-
essarily reflect the opinion of the FOD Economy – Directory of Energy, and does not make them
responsible for any use that may be made of the information contained therein.

7



Topic 5 - Fatigue lifetime of a FOW substructure
Deliverable 2 – Surrogate model to map fatigue strength to
different EOCs

When considering the predicted versus actual HSS plot shown in Figure 7, it is observed
that most of the curves are flat and centred around the y = x line. This line shows the
ideal response of the network, meaning that the trained model is able to predict the mean
stress, but is unable to accurately follow the time domain domain signal. This becomes
more clear when considering the time domain signals illustrated in Figure 8. This figure
shows the locations with the smallest (CBHS3) and largest (MCHS4) range of HSS, with
their respective predicted values. It shows that the trained model predicts results around
the mean stress with an almost constant amplitude, without taking the peaks and valleys
into account.

(a) (b)

(c)

Figure 7: Predicted versus actual HSS for the points of (a) CB2, (b) MC, and (c) YL for
the (128) FNN.

Surprisingly, the single layer model gave the best performance, while deeper FNNs
are typically reported in literature to give better results. This is most likely due to the
limited size of the currently used datasets of 18 environmental states with five minutes of
simulated data for each state. As a result, the deeper models easily overfit to the data,
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Figure 8: Comparison of the predicted and actual stress for CBHS3 and MCHS4 for the
(128) FNN.

giving bad results when tested on new data.

4.2 Long short-term memory network

The LSTM model with the highest overall performance was trained using the MSE loss
function and consists of two hidden layers, one with 32 and one with 16 neurons. This
model achieved a test loss of 0.6318MPa2, but again the difference between the considered
models was small.

When considering the predicted versus actual HSS plot shown in Figure 9, a clear
difference is observed compared to the FNN model, showing more variation in the pre-
dicted stresses. Again, the trained network is able to accurately predict the mean value
of the HSSs, and contrary to the mostly flat responses for the FNN, the LSTM is able to
capture the dynamics more accurately. This is shown more clearly when considering the
time domain test data, as illustrated in Figure 10. The trained model is able to follow the
jump in mean stress between different sea states. However, it again struggles to follow
the peaks and valleys of the stress response.

4.3 Gated recurrent unit network

Similar to the LSTM model, the highest performing model was trained using the MSE
loss function. It consisted of a single hidden layer with 32 neurons and achieved a test
loss of 0.5583MPa2, meaning that it has the best performance of the three considered
architectures.

When considering the predicted versus actual HSS and the time domain signals in
Figures 11 and 12, respectively, similar behaviour to the one of the LSTM network is
observed. When compared to the LSTM model, the predicted versus actual HSS results
are more concentrated around the y = x line, showing the better performance. However,
when considering the time domain signals, the GRU is able to follow the mean HSS, but
is unable to follow the peaks and valleys of the time domain signal, similar to results of
the LSTM.
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(a) (b)

(c)

Figure 9: Predicted versus actual HSS for the points of (a) CB2, (b) MC, and (c) YL for
the (32, 16) LSTM network.

Figure 10: Comparison of the predicted and actual stress for CBHS3 for the (32, 16)
LSTM network.
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(a) (b)

(c)

Figure 11: Predicted versus actual HSS for the points of (a) CB2, (b) MC, and (c) YL
for the (32) GRU network.

Figure 12: Comparison of the predicted and actual stress for CBHS3 for the (32) GRU
network.
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5 Conclusion

Among the three models, the LSTM and GRU models consistently outperformed the
FNN model, showing that the time dependency of the data cannot be neglected. This
is unsurprising as the dynamics of a FOWT are influenced by radiation loads, which
inherently have a time dependency through the use of a convolution integral. For the
RNNs, the LSTM and GRU models gave similar results, with the GRU model achieving
the lowest error, showing its ability to work with limited datasets. However, even the
GRU was only able to capture the mean stress response and not the peaks and valleys
which are necessary for fatigue analyses.

The evaluation of the two RNN architectures shows the potential and the current lim-
itations of surrogate models for fatigue assessment of FOWT substructures. The largest
potential is that both networks are able to predict the mean HSS for all of the selected
HSS points. However, while the models were all able to follow the mean stresses across
different EOCs, the predicted stress amplitudes were significantly smaller than the valida-
tion data. This inability to follow the stress peaks and valleys mean that the results from
rainflow-counting and subsequent application of the Palmgren-Miner rule would give ex-
tremely nonconservative results. I.e., the models do not have a good enough performance
to be used for calculating the accumulation of fatigue damage and resulting lifetime.

To further improve the models, the following points will be considered. First, the time
per sea state must be increased, so that a sufficient range of stochastic combinations of
wind and waves are included. Second, more load cases must be considered and this must
be done in a more structured method. While a long-term fatigue analysis would give
unrealistic proportions to the dataset, the modified contour method [8] can be used to get
a representative dataset of realistic proportions. Finally, turbulent wind and wind-wave
misalignment can be considered to further improve the realism of the model.
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